Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia
نویسندگان
چکیده
The aim of the present study was to develop a ghrelin-containing formulation based on liposomes coated with chitosan intended for nose-brain delivery for the treatment of cachexia. Among the three types of liposomes developed, anionic liposomes provided the best results in terms of encapsulation efficiency (56%) and enzymatic protection against trypsin (20.6% vs 0% for ghrelin alone) and carboxylesterase (81.6% vs 17.2% for ghrelin alone). Ghrelin presented both electrostatic and hydrophobic interactions with the anionic lipid bilayer, as demonstrated by isothermal titration calorimetry. Then, anionic liposomes were coated with N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride. The coating involved a size increment from 146.9±2.7 to 194±6.1 nm, for uncoated and coated liposomes, respectively. The ζ-potential was similarly increased from -0.3±1.2 mV to 6±0.4 mV before and after coating, respectively. Chitosan provided mucoadhesion, with an increase in mucin adsorption of 22.9%. Enhancement of permeation through the Calu3 epithelial monolayer was also observed with 10.8% of ghrelin recovered in the basal compartment in comparison to 0% for ghrelin alone. Finally, aerosols generated from two nasal devices (VP3 and SP270) intended for aqueous dispersion were characterized with either coated or uncoated liposomes. Contrarily to the SP270 device, VP3 device showed minor changes between coated and uncoated liposome aerosols, as shown by their median volume diameters of 38.4±5.76 and 37.6±5.74 µm, respectively. Overall, the results obtained in this study show that the developed formulation delivered by the VP3 device can be considered as a potential candidate for nose-brain delivery of ghrelin.
منابع مشابه
Terpene-loaded liposomes and isopropyl myristate as chemical permeation enhancers toward liposomal gene delivery in lung cancer cells; A comparative study
Gene therapy is in its development stage as a novel method for cancer treatment. Liposomes look promising as gene delivery vectors; however, investigations have shown that these vesicles are not doing well in some cases. It was decided here to investigate the possibility of augmentation of liposomal gene delivery by chemical penetration enhancers.Cationic liposome containing antisense oligonucl...
متن کاملTerpene-loaded liposomes and isopropyl myristate as chemical permeation enhancers toward liposomal gene delivery in lung cancer cells; A comparative study
Gene therapy is in its development stage as a novel method for cancer treatment. Liposomes look promising as gene delivery vectors; however, investigations have shown that these vesicles are not doing well in some cases. It was decided here to investigate the possibility of augmentation of liposomal gene delivery by chemical penetration enhancers.Cationic liposome containing antisense oligonucl...
متن کاملIn vivo evaluation of mucoadhesive properties of nanoliposomal formulations upon coating with trimethylchitosan polymer
Objective(s): Drug delivery via mucosal routes has been confirmed to be effective in inducing strong immune responses. Liposomes could enhance immune responses and mucoadhesive potentials, make them useful mucosal drug delivery systems. Coating of liposomes by mucoadhesive polymers succeeded in enhancing immune responses. Our studies aim at preparation and characterization of trimethylchitosan-...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017